ANALISIS SENTIMEN TOPIK VIRAL DESA PENARI PADA MEDIA SOSIAL TWITTER DENGAN METODE LEXICON BASED

  • Rifiana Arief Universitas Gunadarma
  • Karel Imanuel Universitas Gunadarma
Keywords: Dancer Village, Sentiment Analysis, Lexicon Based, Twitter, WorldCloud

Abstract

Abstract :  The horror story of Dancer Village in Indonesia is a viral topic that has become a talk of citizens on Twitter social media. Various responses and public opinions emerged related to the truth of the story of supernatural experiences of students during a Real Work Lecture in an East Java region of Indonesia. This study conducted a sentiment analysis of community comments on Twitter social media on the viral topic using the Lexicon Based method. Sentiment classification is divided into 3 classes namely positive, negative and neutral. The research phase consists of data collection, pre-processing, processing (sentiment analysis) and visualization. Data collection uses Twitter Search API with 1000 Penari Desa keywords in Indonesian. The lexicon assessment results from 1000 tweets data obtained 33 positive, 767 neutral and 200 negative. The percentage of tweets containing positive comments by 3.3%, neutral 76.7% and negative by 20%

References

[1] A. Clara Sari, R. Hartina, R. Awalia, H. Irianti, N. Ainun, “Komunikasi dan Media Sosial, Research Gate, 2019.
[2] Websindo, “Indonesia Digital 2019: Media Sosial”, Websindo. [Online]. Available: https://websindo.com/indonesia-digital-2019-media-sosial/ [Accessed: 17-Oct-2019).
[3] DetikInet, “Kisah Horor yang Viral di Medsos selain KKN di Desa Penari”, DetikInet. [Online]. Available: https://inet.detik.com/cyberlife/d-4733844/kisah-horor-yang-viral-di-medsos-selain-kkn-di-desa-penari. [Accessed: 10-Oct-2019).
[4] B. Saberi and S. Saad, “Sentiment Analysis or Opinion Mining: A Review”, Ijaseit Vol.7 No. 5 pp 1660-1666, 2017.
[5] Troussas, C. et al, ”Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning”, In IISA 2013. IEEE, pp. 1–6. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapp er.htm?arnumber=6623713 [Accessed May 7, 2015]
[6] N.M.S. Hadna, P.I. Santosa, W.W. Winarno, “Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter”, Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016), 2016, pp 57-64.
[7] A. Alsaeedi, M.Z. Khan, “A Study on Sentiment Analysis Techniques of Twitter Data”, International Journal of Advanced Computer Science and Applications, Vol. 10, No. 2, pp 361-374, 2019.
[8] Billy Gunawan, Helen Sastypratiwi, Enda Esyudha Pratama, “Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes”, Jurnal Edukasi dan Penelitian Informatika, Vol 4, No 2, pp 113-118, 2018
[9] W. Athira Luqyana, I. Cholissodin, R.Setya Perdana, “Analisis Sentimen Cyberbullying pada Komentar Instagram dengan Metode Klasifikasi Support Vector Machine”, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol. 2, No. 11, November 2018, pp. 4704-4713, 2018
[10] I. Zulfa, E Winarko, “Sentimen Analisis Tweet Berbahasa Indonesia dengan Deep Belief Network, IJCCS, Vol.11, No.2, July 2017, pp. 187-198, 2017
[11] Liu, Bing, Hu, Minqing, and Cheng, Junsheng (2005). "Opinion Observer: Analyzing and Comparing Opinions on the Web." Proceedings of the 14th International World Wide Web Conference (WWW-2005), May 10-14, Chiba, Japan.
[12] Github. Devid Haryalesmana. ID-Opinion Words. 27 Juli 2019 [Online]. Tersedia : https://github.com/masdevid/ID-OpinionWords. [Diakses : 27 Juli 2019].
Published
2019-12-19
How to Cite
Arief, R., & Imanuel, K. (2019). ANALISIS SENTIMEN TOPIK VIRAL DESA PENARI PADA MEDIA SOSIAL TWITTER DENGAN METODE LEXICON BASED. Jurnal Ilmiah Matrik, 21(3), 242-250. https://doi.org/10.33557/jurnalmatrik.v21i3.727
Section
Articles
Abstract viewed = 47 times
PDF : 99 times