Literature Review: Data Mining For Student Data Classification

Main Article Content

dendi dendi

Abstract

The abundance of student data and student graduation number data, hidden information can be found by processing student data to be useful to the university. The processing of student data needs to be done to uncover important information in the form of new knowledge (knowledge discovery) such as information on student data classification based on profile and academic data. Therefore, in this research, the researcher plans to conduct a literature review related to data mining for student data classification with the aim of finding out about data mining data processing classification and collecting all designs used in identifying data starting from problems, methodology, equations and results. For this research, researchers used historical data from students from 2007 to 2011 who had graduated. There were 9 research journals that researchers managed to find, each of which used different algorithms or classification techniques. To conduct a literature review, researchers conducted a journal review using PICOT. The results of this research are the success of researchers in classifying student data using data mining techniques.

Article Details

Section

Articles

References

[1] and S. D. Purwandani, C. Sutarsih, “Pengaruh Mutu Layanan Sarana dan Prasarana Terhadap Kepuasan Mahasiswa di Fakultas Pendidikan Teknologi dan Kejuruan Universitas Pendidikan Indonesia,”.

[2] F. Gorunescu, “Data Mining Concept, Models and Techniques. Berlin Heidelberg: Springer.,” 2011.

[3] M. Alghobiri, “A Comparative Analysis of Classification Algorithms on Diverse Datasets. Engineering, Technology & Applied Science Research,” 2018.

[4] W. c Elga Mariati a,1,*, Ariesta Lestari b,2, “Model Klasifikasi kepuasan Mahasiswa Teknik terhadap sarana pembelajaran menggunakan Data Mining”.

[5] Inna Alvi Nikmatun, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa menggunakan Algoritma K-Nearest Neighbor”.

[6] A. S. Mariana Windarti, “Perbandingan Kinerja 6 Algoritme Klasifikasi Data Mining untuk Prediksi Masa Studi Mahasiswa”.

[7] N. P. Wiwit Supriyanti1), “Implementasi Teknik Seleksi Fitur Forward Selection pada Algoritma Klasifikasi Data Mining untuk Prediksi Masa Studi Mahasiswa Politeknik Indonusa Surakarta,” 2018.

[8] Y. I. Eka Sabna1, “Data Mining dengan 2 (dua) model Klasifikasi untuk Prediksi Kinerja Mahasiswa,” http://doi.org/10.33060/jik/2021/.

[9] E. R. Resti1, Dodo Zaenal Abidin2, “Penerapan Data Mining Klasifikasi Untuk Memprediksi Potensi Mahasiswa Berprestasi Di Stikom Dinamika Bangsa Jambi Dengan Metode Naive Bayes,” vol. Vol.3, 2021.

[10] Anggi Trifani, “Penerapan Data Mining Klasifikasi C4.5 dalam Menentukan Tingkat Stres Mahasiswa Akhir,” 2022.

[11] S. Arief Jananto[1]*, Sulastri[2], Eko Nur Wahyudi[3], “Data Induk Mahasiswa sebagai Prediktor Ketepatan Waktu Lulus MenggunakanAlgoritma CART Klasifikasi Data Mining,” DOI 10.32736/sisfokom.v10i1.991.

[12] Ni Luh Ratniasih, “Optimasi Data Mining menggunakan Algoritma Naïve Bayes dan C4.5 Untuk Klasifikasi Kelulusan Mahasiswa”.