APLIKASI E-DIAGNOSIS PENYAKIT ENDIMIK BERBASIS ANDROID MENERAPKAN METODE OPTIMASI NAÏVE BAYES

  • Hadiyansyah Hadiyansyah Universitas Bina Darma
  • Diana Diana Universitas Bina Darma
Keywords: Disease Endemic, Naïve Bayes, Naïve Bayes Optimization, Expert System

Abstract

Lack of public understanding of endemic diseases can increase the number of sufferers. This study aims to build an e-diagnosis application to determine the type of endemic disease using the Naïve Bayes Optimization method.  This application will be able to provide information about the disease suffered by the patient based on the symptoms entered in the application.  The information provided includes a description of the disease, its causes and solutions. The application development stage adopts the stages in the Expert System Development Life Cycle (ESDLC) which includes project initialization, knowledge engineering process and implementation. The application of the Naïve Bayes Oprimization method produces a diagnosis result in the form of the type of disease dan its opportunities.  The application can accessed by the public anywhere and anytime because this application is based on Android. Utilization of android can optimze the use of this application.

References

R. Wowor, “Pengaruh Kesehatan Lingkungan terhadap Perubahan Epidemiologi Demam Berdarah di Indonesia,” J. e-Clinic, vol. 5, no. 2, pp. 105–113, 2017.

T. A. Setiawan, A. Ilyas, and A. P. Wibowo, “Pencegahan dan Edukasi Masyarakat dalam Penanganan Penyakit Endemik Berbasis WEB untuk Peningkatan Kesehatan Masyarkat di Kota Pekalongan,” J. LITBANG Kota Pekalongan, vol. 15, pp. 35–42, 2018.

B. Pratama and J. R. Sagala, “Sistem Pakar Mendiagnosa Penyakit Demam Berdarah Akibat Virus Nyamuk Aedes Aegpty Dengan Menggunakan Metode Certainty Factor,” Excell. Midwifery J., vol. 2, no. 2, pp. 68–73, 2019.

M. Dahria, “Pengembangan Sistem Pakar dalam Membangun Suatu Aplikasi,” J. SAINTIKOM, vol. 10, no. 3, pp. 199–205, 2011.

Z. Hanum, “Kemenkominfo: 89% Penduduk Indonesia Gunakan Smartphone,” Media Indonesia, 2021. https://mediaindonesia.com/humaniora/389057/kemenkominfo-89-penduduk-indonesia-gunakan-smartphone (accessed Nov. 16, 2021).

L. Jemadu and D. Prastya, “Ini Jumlah Pengguna Internet Indonesia 2020 per Provinsi,” Suara.com, 2020. https://www.suara.com/tekno/2020/11/13/191253/ini-jumlah-pengguna-internet-indonesia-2020-per-provinsi (accessed Nov. 16, 2021).

R. M. Gozzal and D. Indarti, “Aplikasi Sistem Pakar Diagnosa Penyakit Pencernaan Balita dengan Metode Forward Chaining Berbasis Android Reynaldo,” J. Ilm. Inform. Komput., vol. 22, no. 3, pp. 180–190, 2017.

C. Susanto, Usman, and Mudarsep, “Aplikasi Sistem Pakar Mendiagnosa Penyakit Malaria Applications Expert System Diagnose Malaria Disease,” J. Voice Informatics, vol. 15, no. 2, pp. 15–24, 2021.

S. Setiyowati, Sumiati, Sutarti, A. H. Wibowo, V. Rosalina, and T. A. Munandar, “Group Decision Support System to Determine Regional Development Priority Using the Item-Based Clustering Hybrid Method,” J. Comput. Sci., vol. 15, no. 4, pp. 511–518, 2019, doi: 10.3844/jcssp.2019.511.518.

D. Diana, “Sistem Pendukung Keputusan Menentukan Lokasi Usaha Waralaba Menggunakan Metode Bayes,” J. Ilm. MATRIK, vol. 19, no. 1, pp. 41–52, 2017, doi: https://doi.org/10.33557/jurnalmatrik.v19i1.370.

C. P. Buani, Duwi, “Optimasi Algoritma Naive Bayes dengan Menggunakan Algoritma Genetik untuk Prediksi Kesuburan,” J. Evolusi, vol. 4, no. 1, pp. 55–64, 2016.

Nurhachita and E. S. Negara, “A comparison between deep learning, naïve bayes and random forest for the application of data mining on the admission of new students,” IAES Int. J. Artif. Intell., vol. 10, no. 2, pp. 324–331, 2021, doi: 10.11591/ijai.v10.i2.pp324-331.

A. Triayudi, Sumiati, S. Dwiyatno, D. Karyaningsih, and Susilawati, “Measure the effectiveness of information systems with the naïve bayes classifier method,” IAES Int. J. Artif. Intell., vol. 10, no. 2, pp. 414–420, 2021, doi: 10.11591/IJAI.V10.I2.PP414-420.

S. Taheri and M. Mammadov, “Learning the naive bayes classifier with optimization models,” Int. J. Appl. Math. Comput. Sci., vol. 23, no. 4, pp. 787–795, 2013, doi: 10.2478/amcs-2013-0059.

I. P. Astuti, I. Hermadi, A. Buono, and K. H. Mutaqin, “Design of an Expert System for Controlling Soybean Diseases,” Inform. Pertan., vol. 25, no. 1, pp. 117–130, 2016.

Published
2023-01-09
How to Cite
Hadiyansyah, H., & Diana, D. (2023). APLIKASI E-DIAGNOSIS PENYAKIT ENDIMIK BERBASIS ANDROID MENERAPKAN METODE OPTIMASI NAÏVE BAYES. Jurnal Ilmiah Matrik, 24(3), 283–291. https://doi.org/10.33557/jurnalmatrik.v24i3.2002
Section
Articles
Abstract viewed = 17 times
PDF : 9 times