Prediksi Jangka Pendek Harga Bahan Pokok Dki Jakarta Menggunakan Metode Weighted Exponential Moving Average

  • Rifqi Pratama Junior Universitas Jenderal Achmad Yani
  • Fajri Rakhmat Umbara
  • Puspita Nurul Sabrina
Keywords: Staple Commodities, WEMA, MAPE

Abstract

Weighted Exponential Moving Average (WEMA) is a new method that combines WMA and EMA, predicting data based on the future and calculating the value of the data weighting factor over time. Commodities are goods that can be sold freely in the market, one of which is staple food to meet daily needs. This study implements the WEMA method in the short-term prediction of staple food prices, with pre-processing stages using data selection and imputation to overcome missing values. Then the data is divided into training data (75%), and test data (25%), on sugar attribute data, chicken eggs, cooking oil, chicken, and beef. A mean absolute percentage error (MAPE) evaluation was carried out on training data and test data to measure prediction accuracy. The experimental and evaluation results show that accuracy depends on the range and length of the data used. The use of span 2 for both data shows the best results on all evaluated attributes; the results of the MAPE evaluation are below 10%.

References

K. Puteri and A. Silvanie, “Machine Learning Untuk Model Prediksi Harga Sembako Dengan Metode Regresi Linier Berganda,” J. Nas. Inform., vol. 1, no. 2, pp. 82–94, 2020.

Sumaryanto, “Analisis Volatilitas Harga Eceran Beberapa Komoditas Pangan Utama dengan Model ARCH/GARCH,” J. Agro Ekon., vol. 27, no. 2, p. 135, 2016, doi: 10.21082/jae.v27n2.2009.135-163.

J. E. Islam, “Al-Sharf Al-Sharf Jurnal Ekonomi Islam,” vol. 1, no. 1, pp. 43–51, 2020.

A. S. Lukman et al., “Keamanan Pangan untuk Semua Food Safety for All,” J. Mutu Pangan, vol. 2, no. 2, pp. 159–164, 2015.

K. Syaidah, Y. H. Chrisnanto, and G. Abdillah, “Prediksi Harga Sembako di DKI Jakarta Menggunakan Artificial Neural Network,” JUMANJI (Jurnal Masy. Inform. Unjani), vol. 3, no. 02, p. 136, 2020, doi: 10.26874/jumanji.v3i02.63.

V. A. Fitria, “Peramalan Harga Sembako di Kota Malang Menggunakan Metode Single Exponential Smoothing,” J. Sains Mat. dan Stat., vol. 5, no. 1, pp. 127–132, 2019.

S. Hansun, M. B. Kristanda, and P. M. Winarno, “Big 5 ASEAN capital markets forecasting using WEMA method,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 17, no. 1, pp. 314–319, 2019, doi: 10.12928/TELKOMNIKA.v17i1.11625.

S. Florencia and A. Suryadibrata, “Prediksi Kedatangan Turis Menggunakan Algoritma Weighted Exponential Moving Average,” Ultim. J. Tek. Inform., vol. 12, no. 2, pp. 129–132, 2020, doi: 10.31937/ti.v12i2.1831.

S. Hansun, “Penerapan WEMA dalam Peramalan Data IHSG,” J. Ultim., vol. 5, no. 2, pp. 63–66, 2013, doi: 10.31937/ti.v5i2.323.

A. Fadhillah, M. Bettiza, and N. Ritha, “Perbandingan Metode Chen dan Model Cheng Pada Algoritma Fuzzy Time Series untuk Produksi Harga Bahan Pokok,” Umrah, vol. Vol. 08, pp. 1–7, 2017.

Published
2023-11-07
How to Cite
Junior, R., Umbara, F., & Sabrina, P. (2023). Prediksi Jangka Pendek Harga Bahan Pokok Dki Jakarta Menggunakan Metode Weighted Exponential Moving Average. Jurnal Ilmiah Matrik, 25(3), 218–225. https://doi.org/10.33557/jurnalmatrik.v25i3.2575
Section
Articles
Abstract viewed = 18 times
PDF : 12 times