Analisis Tren Historis Dan Prediksi Beban Listrik Pada Tenaga Listrik Menggunakan Artificial Neural Network Dengan Metode Backpropagation: Systematic Literature Review

Authors

  • Regina Septient Malini Universitas Islam Indonesia
  • Alvin Sahroni Universitas Islam Indonesia
  • Hendra Setiawan Universitas Islam Indonesia

DOI:

https://doi.org/10.33557/8kyfgz81

Keywords:

Artificial Neural Network, Electrical load forecasting, back propagation

Abstract

Electric load forecasting is a critical step in ensuring the reliability of power systems amid rising energy demand driven by digitalization, industrialization, and urbanization. This article presents a Systematic Literature Review (SLR) on the application of Artificial Neural Networks (ANN) with backpropagation algorithms for load prediction based on historical data, employing the PRISMA framework for study screening and selection. The review analyzes nine relevant national journals to identify trends in accuracy, network configurations, and model effectiveness. Findings indicate that ANN with backpropagation can achieve low prediction error rates, such as a Mean Absolute Percentage Error (MAPE) of 0.05% in industrial sectors and up to 99.88% accuracy in specific cases. ANN also demonstrates strong capability in capturing dynamic changes in energy consumption, making it a reliable method for supporting operational planning and efficient electricity distribution. Despite promising performance, several aspects remain underexplored, including more complex ANN architectures, hyperparameter tuning techniques, limited cross-regional validation, and insufficient comparative analysis with alternative methods such as ensemble learning or deep learning-based algorithms. This review offers comprehensive insights into the integration of artificial intelligence in power systems and lays the groundwork for developing more adaptive, precise, and broadly generalizable load forecasting strategies in the future.

Downloads

Download data is not yet available.

References

[1] M. P. S. Gunawan and W. Ariwibowo, “Peramalan Beban Listrik Jangka Pendek Menggunakan Metode Feed Forward Backpropagation Neural Network,” J. Tek. Elektro, 2020, [Online]. Available: https://ejournal.unesa.ac.id/index.php/JTE/article/view/35265

[2] E. Yuniarti, W. Wardiman, W. Wirangga, and B. Alfarezi, “Peningkatan Akurasi pada Prediksi Beban Listrik Menggunakan Metode Moving Average,” J. Serambi Eng., vol. 6, no. 1, pp. 1516–1521, 2021, doi: 10.32672/jse.v6i1.2605.

[3] F. Rohman, “Prediksi Beban Listrik Dengan Menggunakan Jaringan Syaraf Tiruan Metode Backpropagation,” J. Surya Energy, vol. 5, no. 2, pp. 55–60, 2022, doi: 10.32502/jse.v5i2.3092.

[4] D. Setyowati and S. Sunardiyo, “Prakiraan Kebutuhan Energi Listrik Dengan Jaringan Saraf Tiruan (Artificial Neural Network) Metode Backpropagation Tahun 2020-2025,” J. EECCIS (Electrics, Electron. Commun. Control. Informatics, Syst., vol. 14, no. 1, pp. 6–9, 2020, doi: 10.21776/jeeccis.v14i1.604.

[5] C. Pavlatos, E. Makris, G. Fotis, V. Vita, and V. Mladenov, “Utilization of Artificial Neural Networks for Precise Electrical Load Prediction,” Technologies, vol. 11, no. 3, pp. 1–14, 2023, doi: 10.3390/technologies11030070.

[6] R. Adolph, “Oversupply Perusahaan Listrik Negara,” Pus. Anal. Anggar. Dan Akuntabilitas Keuang. Negara, pp. 1–23, 2016.

[7] W. Kholis, Nur. Agung, Imam. Aribowo, “PERAMALAN BEBAN PUNCAK MENGGUNAKAN METODE FEED FORWARD BACKPROPAGATION DAN GENERALIZED REGRESSION NEURAL NETWORK Yunus Alam Suryatna Nur Kholis , Imam Agung , Widi Aribowo,” 2021.

[8] M. Muhtar, Novie Ayub Windarko, Setiawardhana, and Kadek Reda Setiawan Suda, “Short Term Forecasting Beban Listrik Menggunakan Artificial Neural Network,” J. Pendidik. Teknol. dan Kejuru., vol. 20, no. 1, pp. 13–22, 2023, doi: 10.23887/jptkundiksha.v20i1.53919.

[9] M. N. Fadilah, A. Yusuf, and N. Huda, “Prediksi Beban Listrik Di Kota Banjarbaru Menggunakan Jaringan Syaraf Tiruan Backpropagation,” J. Mat. Murni Dan Terap. Epsil., vol. 14, no. 2, p. 81, 2021, doi: 10.20527/epsilon.v14i2.2961.

[10] S. Arif et al., “SNESTIK Seminar Nasional Teknik Elektro, Sistem Informasi, dan Teknik Informatika Analisa Prediksi Beban Listrik Menggunakan Artificial Neural Network (Ann),” SNESTIK Semin. Nas. Tek. Elektro, Sist. Informasi, dan Tek. Inform., pp. 104–111, 2023, [Online]. Available: https://ejurnal.itats.ac.id/snestikdanhttps://snestik.itats.ac.id

[11] H. Hartono, Y. Muharni, I. Setiawan, I. Saraswati, and A. Maulana, “Load Forecasting Energi Listrik Provinsi Banten Tahun 2022-2030 Menggunakan Metode Backpropagation Neural Network,” J. Syst. Eng. Manag., vol. 2, no. 1, p. 45, 2023, doi: 10.36055/joseam.v2i1.19265.

[12] Akbar Alfin Aulia, “Magister Teknik Elektro_20602200001_fullpdf,” Progr. Stud. Magister Tek. Elektro, no. PREDIKSI KEBUTUHAN ENERGI LISTRIK KOTA SEMARANG TAHUN 2025-2030 BERBASIS BACKPROPAGATION DAN REGRESI LINEAR, pp. 1–86, 2025.

[13] A. H. Wijaya, “Artificial Neural Network Untuk Memprediksi Beban Listrik Dengan Menggunakan Metode Backpropagation (Studi Kasus PT.PLN Regional Sumatera Barat),” J. CoreIT, vol. 5, no. 2, pp. 61–70, 2019, doi: 10.58466/entries.

[14] G. R. Sosa, M. Z. Falah, D. F. L, A. P. Wibawa, A. N. Handayani, and J. A. H. Hammad, “Forecasting electrical power consumption using ARIMA method based on kWh of sold energy,” Sci. Inf. Technol. Lett., vol. 2, no. 1, pp. 9–15, 2021, doi: 10.31763/sitech.v2i1.637.

[15] Rido Safaryansyah, Alda Cendekia Siregar, and Istikoma, “Prediction of Electricity kWh Sales in Pontianak City Using Linear Regression Method,” J. Artif. Intell. Eng. Appl., vol. 4, no. 3, pp. 1778–1781, 2025, doi: 10.59934/jaiea.v4i3.1011.

Downloads

Published

2025-09-10

How to Cite

Analisis Tren Historis Dan Prediksi Beban Listrik Pada Tenaga Listrik Menggunakan Artificial Neural Network Dengan Metode Backpropagation: Systematic Literature Review. (2025). Jurnal Ilmiah Matrik, 27(2), 162-168. https://doi.org/10.33557/8kyfgz81