Penerapan Model Machine Learning untuk Memprediksi Serangan Jantung Dini
DOI:
https://doi.org/10.33557/2cg02a51Keywords:
Machine Learning, Early Detection, Heart DiseaseAbstract
Heart disease is one of the leading causes of death worldwide, and early detection is crucial in reducing mortality rates. In Indonesia, heart disease is a primary cause of death, exacerbated by limited access to healthcare, especially in rural areas. Traditional diagnostic methods, such as physical examinations and EKG, often lack accuracy in predicting heart attacks. This research aims to develop an early prediction model for heart attacks using machine learning, specifically Random Forest and Support Vector Machine (SVM). These models were trained using a dataset containing various medical variables, including age, gender, blood pressure, cholesterol levels, and ECG results. The study finds that the Random Forest model outperforms SVM, with an accuracy of 90% and a recall of 93% for heart disease detection, making it more reliable for early detection of at-risk patients. The results suggest that machine learning can significantly enhance early heart attack detection, offering a potential solution to reduce heart disease-related mortality.Downloads
References
[1] P. Rahayu, “Perancangan Aplikasi Diagnosa Penyakit Jantung Menggunakan Metode Forward Chaining,” Jurnal Santi - Sistem Informasi Dan Teknik Informasi, 2023, doi: 10.58794/santi.v1i3.337.
[2] F. Fredilio, J. Rahmad, S. H. Sinurat, D. R. Hamonangan Sitompul, D. J. Ziegel, and E. Indra, “Perbandingan Algoritma K-Nearest Neighbors (K-Nn) Dan Random Forest Terhadap Penyakit Gagal Jantung,” Jurnal Teknologi Informatika Dan Komputer, 2023, doi: 10.37012/jtik.v9i1.1432.
[3] N. Fajriati and B. Prasetiyo, “Optimasi Algoritma Naive Bayes Dengan Diskritisasi K-Means Pada Diagnosis Penyakit Jantung,” Jurnal Teknologi Informasi Dan Ilmu Komputer, 2023, doi: 10.25126/jtiik.20231036510.
[4] A. Masruriyah, H. Y. Novita, C. Sukmawati, A. Ramadhan, S. Arif, and B. A. Dermawan, “Pengukuran Kinerja Model Klasifikasi Dengan Data Oversampling Pada Algoritma Supervised Learning Untuk Penyakit Jantung,” Computer Science (Co-Science), 2024, doi: 10.31294/coscience.v4i1.2389.
[5] S. C. Dwi Astuti and N. Olii, “Heart Disease Risk Factors in Adolescent Women,” Jambura Journal of Health Sciences and Research, 2022, doi: 10.35971/jjhsr.v4i2.13434.
[6] A. Nurmasani and Y. Pristyanto, “Algoritme Stacking Untuk Klasifikasi Penyakit Jantung Pada Dataset Imbalanced Class,” Pseudocode, 2021, doi: 10.33369/pseudocode.8.1.21-26.
[7] J. Pradono and A. Werdhasari, “Faktor Determinan Penyakit Jantung Koroner Pada Kelompok Umur 25-65 Tahun Di Kota Bogor, Data Kohor 2011-2012,” Buletin Penelitian Kesehatan, 2018, doi: 10.22435/bpk.v46i1.48.
[8] P. A. Widyaswara Suwaryo et al., “Melangkah Menuju Hidup Sehat: Peningkatan Pengetahuan Keluarga Tentang Pencegahan Penyakit Jantung Koroner,” JPP, 2023, doi: 10.32584/jpp.v2i2.2185.
[9] A. Alkhusari, M. Handayani, M. A. Sasmita Saputra, and M. Rhomadhon, “Analisis Kejadian Penyakit Jantung Koroner Di Poliklinik Jantung,” Jurnal Aisyiyah Medika, 2020, doi: 10.36729/jam.v5i2.758.
[10] W. Ben Ali et al., “Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble,” Front Cardiovasc Med, 2021, doi: 10.3389/fcvm.2021.711401.
[11] B. Rahman, B. S. Sabarguna, H. S. Warnars, and W. Budiharto, “Early Detection of Heart Disease Based on Medical Check-Up Datasets Using Multilayer Perceptron Classifier,” 2023, doi: 10.21203/rs.3.rs-2992373/v1.
[12] R. Yılmaz and F. H. Yağın, “Early Detection of Coronary Heart Disease Based on Machine Learning Methods,” Medical Records, 2022, doi: 10.37990/medr.1011924.
[13] S. M. Paschalis, D. K. Yanti Hutapea, and K. O. Bachri, “Heart Sound Processing for Early Diagnostic of Heart Abnormalities Using Support Vector Machine,” Jurnal Eltikom, 2024, doi: 10.31961/eltikom.v8i1.1031.
[14] P. Agudo-Montore, G. Stuart, D. Wilson, G. Spentzou, R. Sidiqqui, and M. C. Gonzalez Corcia, “Role of New Generation Implantable Loop Recorders in Managing Undiagnosed Pediatric Cardiac Symptoms,” 2024, doi: 10.21203/rs.3.rs-4655922/v1.
[15] J. Liao, L. Huang, M. Qu, B. Chen, and G. Wang, “Artificial Intelligence in Coronary CT Angiography: Current Status and Future Prospects,” Front Cardiovasc Med, 2022, doi: 10.3389/fcvm.2022.896366.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Matrik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Ilmiah Matrik byhttps://journal.binadarma.ac.id/index.php/jurnalmatrik is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








