Penerapan Algoritma Fp-Growth Dalam Menganalisis Pola Penjualan Produk Teh Untuk Menentukan Produk Unggulan Pada PT Kartini Teh Nasional
DOI:
https://doi.org/10.33557/6kw9xg21Keywords:
FP-Growth, sales pattern analysis, frequent item set, association rules, flagship productAbstract
Abstract : This study applies the FP-Growth algorithm to analyze sales patterns and determine flagship products at PT Kartini Teh Nasional. The key problem is the underutilization of transaction data to understand consumer preferences and purchasing patterns. The research aims to develop an association-based data mining model to support marketing strategy and inventory management. The tea products analyzed and sold by the company include: Dandang 1T, Dandang 400gr, Dandang 1/4T, Dandang 2in1, Blacktea Box 25pcs, Jasmine Renceng 8pcs, Jasmine Pack 100pcs & Lunchbox, Blacktea Pack 100pcs, Blacktea Vanilla, Jasmine Box 25pcs, Ningrat Tea, and Blacktea Renceng 8pcs. FP-Growth analysis produces frequent itemsets and association rules, where the highest values are found in the best-selling product combinations: Dandang 1T (support 97.0%; confidence 97.0%), Dandang 2in1 (support 97.0%; confidence 97.0%), and Jasmine Renceng 8pcs (support 97.0%; confidence 98.5%). The highest confidence is held by Jasmine Renceng 8pcs at 98.5%, indicating the strongest purchase consistency in association patterns. Based on these results, the three products are identified as flagship items that can serve as a basis for promotional strategy, product bundling, and more efficient stock management. The FP-Growth algorithm proves effective in uncovering hidden purchasing patterns to enhance the company’s competitive advantage.
Downloads
References
[1] D. A. Istiqomah, Y. Astuti, and S. Nurjanah, “Implementasi Algoritma Fp-Growth Dan Apriori Untuk Persediaan Produk,” J. Inform. Polinema, vol. 8, no. 2, pp. 37–42, 2022.
[2] T. Febrian, Rino, and H. Wijaya, “Penerapan Data Mining Untuk Menganalisa Data Penjualan Barang Di Swalayan Dengan Menggunakan Algoritma Fp-Growth,” Algor, vol. 4, no. 2, pp. 98–106, 2023.
[3] Nurasiah, “Implementasi Algoritma FP-Growth Pada Pengenalan Pola Penjualan,” TIN Terap. Inform. Nusant., vol. 1, no. 9, pp. 438–444, 2021.
[4] F. Syaifulloh, E. Y. Puspaningrum, and M. M. Al Haromainy, “Analisis Pola Pembelian Pelanggan Menggunakan Algoritma Squeezer, Apriori dan FP-Growth Pada Toko Bangunan,” Modem J. Inform. dan Sains Teknol., vol. 2, no. 3, pp. 134–147, 2024.
[5] S. Rihastuti and A. Rosyidi, “Penerapan Algoritma Fp-Growth Untuk Analisa Pola Belanja Konsumen Toko Daffamart,” J. Teknol. Inf., vol. 9, no. 2, pp. 126–131, 2023.
[6] L. Ulfa, S. Rahmatullah, and Irmawati, “Analisa Pola Pembelian Konsumen Menggunakan Algoritma Fp-Growth Pada Nusa Ricebowl &Burger,” JISAMAR (Journal …, vol. 7, no. 2, pp. 388–402, 2023.
[7] B. Aprellia, S. Lestanti, and S. N. Budiman, “Penerapan Data Mining Menggunakan Algoritma FP-Growth Untuk Menentukan Pola Pembelian Produk Pada Minimarket Justin Mart,” JATI (Jurnal Mhs. Tek. Inform., vol. 2, no. 3, pp. 158–171, 2024.
[8] Serli and R. E. Saputro, “Penerapan Algoritma FP-Growth Untuk Menentukan Pola Penjualan Najah Mart,” J. Student Res., vol. 17, no. 1, pp. 1–19, 2025.
[9] G. Bayu Atmaja and R. Rachman, “Perbandingan Algoritma Apriori Dan FP-Growth Pada Analisis Perilaku Konsumen Terhadap Pembelian Data Elektronik,” vol. 7, no. 1, pp. 298–307, 2025.
[10] D. Rachmawati, Y. Cahyana, E. E. Awal, and S. Faisal, “Perbandingan Algoritma Apriori dan Algoritma FP-Growth dalam Menentukan Pola Penjualan Pupuk,” J. Resist. (Rekayasa Sist. Komputer), vol. 3, no. 1, pp. 21–31, 2024.
[11] H. D. Ariyantini, D. Malita Puspita, and A. Triyono, “Implementasi Algoritma Fp-Growth Untuk Rekomendasi Produk Di Toko LM Mart,” J. Ilmu Komput. An Nuur, vol. 4, no. 1, pp. 1–12, 2024.
[12] A. P. Sandi and V. W. Ningsih, “Implementasi Data Mining Sebagai Penentu Persediaan Produk Dengan Algoritma Fp-Growth Pada Data Penjualan Sinarmart,” J. Publ. Ilmu Komput. dan Multimed., vol. 1, no. 2, pp. 111–122, 2022.
[13] E. C. Vidiya and G. Testiana, “Analisis Pola Pembelian di Lathansa Cafe & Ramen dengan Menggunakan Algoritma FP-Growth Berbantuan RapidMiner,” G-Tech J. Teknol. Terap., vol. 7, no. 3, pp. 1118–1126, 2023.
[14] T. Triyanto, H. Yulianti, and M. Ikhwani, “Penerapan Data Mining Terhadap Data Penjualan Dengan Menggunakan Algoritma Apriori Pada Toko Citra Utama,” J. Inf. Syst. Applied, Manag. Account. Res., vol. 8, no. 2, p. 401, 2024.
[15] K. Nisa, “Penerapan Data Mining Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan Menggunakan Algoritma Apriori,” J. Tek. Inform. UNIKA St. Thomas, vol. 06, pp. 306–315, 2021.
[16] A. A. Nenat, Y. P. Kurniawan Kelen, L. P. Gelu, and B. Baso, “IMPLEMENTASI ALGORITMA FP-GROWTH UNTUK MENGETAHUI POLA PENEMPATAN BUKU DI PERPUSTAKAAN DAERAH TTU,” vol. 7, no. 2, pp. 408–421, 2025.
[17] I. A. Darmawan, M. F. Randy, I. Yunianto, M. M. Mutoffar, and M. T. P. Salis, “Penerapan Data Mining Menggunakan Algoritma Apriori Untuk Menentukan Pola Golongan Penyandang Masalah Kesejahteraan Sosial,” Sebatik, vol. 26, no. 1, pp. 223–230, 2022.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Jurnal Ilmiah Matrik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Jurnal Ilmiah Matrik byhttps://journal.binadarma.ac.id/index.php/jurnalmatrik is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.








