PENINGKATAN KUALITAS PRODUK DENGAN PENDEKATAN METODE SIX SIGMA

Yanti Pasmawati¹, Amiluddin Zahri² Dosen Fakultas Teknik Universitas Bina Darma Jalan Jendral A.Yani No.03 Palembang Surel: yantipasmawati@binadarma.ac.id

Abstract: Printing is a manufacturing industry engaged in printing. Types of products produced include textbooks, modules, journals, brochures, calendars, invitations and others. Problems that occur in the Erwin printing industry that there are defective products that result in decreased production quantities and there are consumer complaints of dissatisfaction of the prints received. Furthermore, it is necessary to solve the problem conducted by research using Six Sigma method approach. Based on the six sigma method it is found that the printing industry performance capability is an average of 3.34 and the probability of damage of 35000 in one million productions, for a total printing having an average of 3.15 sigma with 55000 damage probability in one million production, and the number of defects in the second printing product Still at the limit of control. This shows that both printing performance capabilities are good enough to compete with similar competitors. While the dominant factors causing defective products are human and machine factors.

Keywords: Quality, SixSigma, Defect Per Unit, Defect Per Million Opportunities

Abstrak: Percetakan merupakan industri manufaktur yang bergerak di bidang percetakan. Jenis produk yang diproduksi antara lain buku ajar, modul, jurnal, brosur, kalendar, undangan dan lain-lain. Permasalahan yang terjadi pada industri percetakan Erwin yaitu terdapat produk cacat yang mengakibatkan jumlah produksi menurun dan terdapat keluhan konsumen atas ketidakpuasan dari hasil cetakan yang diterima. Selanjutnya diperlukan penyelesaian masalah tersebut dilakukan penelitian dengan menggunakan pendekatan metode Six sigma. Berdasarkan metode six sigma didapat bahwa kapabilitas kinerja industri percetakan rata-rata sebesar 3.34 dan kemungkinan kerusakan sebesar 35000 dalam satu juta produksi, untuk percetakan total memiliki rata —rata sigma 3.15 dengan kemungkinan kerusakan sebesar 55000 dalam satu juta produksi, dan jumlah kecacatan produk kedua percetakan masih berada pada batas kendali. Hal ini menunjukkan kapabilitas kinerja kedua percetakan cukup baik untuk bersaing dengan kompetitor sejenis. Sedangkan faktor dominan penyebab terjadinya produk cacat adalah faktor manusia dan mesin.

Kata kunci: Kualitas, Six Sigma, Defect Per Unit, Defect Per MillionOpportunities

1. PENDAHULUAN

Percetakan Erwin dan Percetakan Total merupakan industri manufaktur yang bergerak di percetakan. Jenis produk yang diproduksi antara lain buku ajar, modul, jurnal, brosur, kalendar, undangan, dll. Sebagian besar konsumen berasal dari dunia pendidikan dan perkantoran. Setiap produksi sering terdapat produk cacat yang dapat menurunkan jumlah produksi dan konsumen merasa tidak puas terhadap kualitas hasil

cetakan. Jenis produk cacat terbesar dan keluhan konsumen adalah buku dan brosur. Faktor keluhan yang didapat bagi konsumen antara lain ukuran buku yang tidak sama, tulisan dan warna yang tidak jelas.

Keluhan-keluhan konsumen merupakan tantangan bagi perusahaan untuk terus memperbaiki dan meningkatkan kualitas produksi. Oleh karena sangat penting untuk mengetahui faktor-faktor apa saja yang menyebabkan produk cacat pada buku dan brosur dengan menggunakan metode six sigma. Metode Six Sigma didefiniskan sebagai strategi perbaikan bisnis untuk menghilangkan pemborosan, mengurangi biaya karena buruk. menghasilkan kualitas yang dan memperbaiki efektivitas dan efisiensi semua kegiatan operasi, sehingga mampu memenuhi kebutuhan dan harapan pelanggan. (Ariani, 2004).

Hal ini sangat penting bagi perusahaan untuk pengurangan biaya, peningkatan produktifitas, pertumbuhan pangsa pasar, retensi pelanggan, pengurangan waktu siklus, pengurangan defect dan pengembangan produk atau jasa serta dapat bertahan dan bersaing di dunia industri percetakan.

Tujuan penelitian yaitu meningkatkan kualitas proses produksi cetakan dan meminimalisasi jumlah produk cacat. Adapun hal-hal yang dilakukan antara lain:

- Mengetahui kapabilitas kinerja industri percetakan dalam proses produksi cetakan
- Mengidentifikasi faktor-faktor dominan penyebab produk cacat pada hasil cetakan

2. METODOLOGI PENELITIAN

Penelitian ini dilaksanakan pada Percetakan Erwin dan Percetakan Total yang terletak di Palembang. Objek penelitian adalah proses produksi cetakan buku dan brosur.

Metode pengumpulan data dilakukan dengan 2 (dua) cara yaitu secara primer maupun

sekunder. Adapun data-data yang dibutuhkan pada penelitian ini, antara lain:

- 1. Jumlah produksi produk
- 2. Jumlah produksi produk cacat
- 3. Data faktor-faktor penyebab produk cacat
- 4. Studi literature tentang metode six sigma
- 5. Proses produksi percetakan
- 6. Jenis cacat produk

2.1 Metode Pengolahan Data

Metode pengolahan data penelitian yaitu dengan menggunakan pendekatan metode six sigma. Adapun tahap atau langkah pengolahan data tersebut sebagai berikut:

a. Define

Langkah ini untuk mendefinisikan rencana-rencana tindakan yang harus dilakukan untuk melaksanakan peningkatan dari setiap tahap proses bisnis.

b. Mengukur (measure)

Tahapmelakukan validasi permasalahan, mengukur atau menganalisa permasalahan dari data yang data.

c. Menganalisa (analyze)

Melakukan analisis hubungan sebabakibat berbagai faktor yang dipelajari untuk mengetahui faktor-faktor dominan yang perlu dikendalikan.

d. Memperbaiki (Improve)

Merancang solusi dalam melakukan pengendalian dan peningkatan kualitas dengan Six Sigma pada layanan yang paling kritis berupa usulan perbaikan kualitas bagi setiap CTQ potensial sehingga diharapkan dapat

meningkatkan performansi kualitas layanan tersebut dengan meningkatnya nilai DPMO dan tingkat kapabilitas *Six Sigma*. (Pande, Peter S., et al. 2002)

e. Kontrol (Control)

Membuat lembar control yang digunakan untuk mengendalikan proses atau layanan pada saat implementasi sehingga dapat tercapai target *Six Sigma*.

2.2 Teknik Analisis Data

Teknik analisis data dilakukan dengan cara kuantitatif dan kualitatif, dimana melakukan analisis mengenai tingkat kecacatan produk dan faktor-faktor penyebab kecacatan produk pada produksi percetakan terutama produk buku maupun brosur.

3. HASIL DAN PEMBAHASAN

3.1 Pengumpulan Data

a. Data Jumlah Produksi Tahun 2014

Tabel 1. Data Jumlah Produksi Percetakan Erwin dan Percetakan Total

		Perc	Produksi etakan nbar)	Proc CacatPer (lem	rcetakan
No	Bulan	Erwin	Total	Erwin	Total
1	Januari	22500	64000	450	3200
2	Februari	22500	64000	900	3840
3	Maret	22500	65000	675	2600
4	April	46800 31500		2340	1890
5	Mei	46800	32500	1872	2275
6	Juni	40500	150000	1215	9000
7	Juli	40500	84500	810	3380
8	Agustus	31200	84500	1560	2535
9	September	31200	84500	1560	1690
10	Oktober	31200	84500	936	6760
11	November	52000	40500	1040	2835
12	Desember	52000 51000		2080	4080

Sumber: data percetakan erwin dan total, 2014.

b. Hasil Produksi Cetakan

Gambar 1. Produk Hasil Cetakan

3.2 Pengolahan Data

Pengolahan data dilakukan berdasarkan data produksi percetakan erwin dan percetakan total. Adapun langkah-langkah pengolahan data dengan menggunakan metode *six sigma* sebagai berikut:

3.2.1 *Define*

Define merupakan langkah awal dalam pendekatan six sigma hal yang pertama yang dilakukan adalah mengidentifikasi hal-hal yang dianggap penting dalam proses produksi (critical to quality). Pada proses produksi terjadi beberapa kendala atau masalah yang sering terjadi, antara lain: (Gaspersz, Vincent. 2002.)

- Gambar dan Tulisan Kabur
 Kurangnya proses pengecekan mesin cetakan, tinta yang mengakibatkan gambar dan tulisan menjadi kabur atau kurang jelas.
- Kotor
 Terdapat beberapa penyebab hasil cetakan kotor, antara lain lingkungan kerja, mesin, maupun operator yang dalam kondisi tangan kotor.
- 3) Tulisan tidak beraturan dan berbayang

Biasanya disebabkan karena perawatan mesin tidak teratur dan pemanasan mesin kurang lama.

4) Terlipat

Disebabkan karena pemanasan mesin yang kurang lama, alat penggulungan yang tidak stabil, dan peletakan kertas yang tidak sesuai.

Mendefinisikan rencana tindakan yang harus dilakukan berdasarkan hasil wawancara adalah:

- a. Perawatan mesin secara berkala
- b. Lingkungan kerja yang bersih
- Prosedur kerja yang jelas dan pemahaman bagi operator

3.2.2 Measure

Measure dilakukan untuk mengetahui seberapa besar tingkat kecacatan produk dengan pengukuran tingkat six sigma dan DPU (Defect Per Unit), serta Defect Per Million Opportunities(DPMO). (Pande, Peter S., et al. 2002)

1. Percetakan Erwin

 $=\frac{450}{22500}$ x 1.000.000 =20000

$$\begin{aligned} & \text{DPU} = \frac{\textit{Jumlah Cacat}}{\textit{Jumlah unit yang diproduksi}} \\ & = \frac{450}{22500} = \ 0.02 \\ & \text{DPMO} = \frac{\textit{Jumlah Cacat}}{\textit{Jumlah unit yang diproduksi}} \text{x} \ 1.000.000 \end{aligned}$$

Mengkonversikan hasil perhitungan DPMO ke tabel sigma untuk mendapatkan hasil *sigma*. (Manggala, D. 2005).

Tabel 2. Produksi Percetakan Erwin

Tahun 2014

Bulan	Hasil	Produk			Nilai
ke-	Produksi	Cacat	DPU	DPMO	Sigma
1	22500	450	0.02	20000	3.6
2	22500	900	0.04	40000	3.3
3	22500	675	0.03	30000	3.4
4	46800	2340	0.05	50000	3.1
5	46800	1872	0.04	40000	3.3
6	40500	1215	0.03	30000	3.4
7	40500	810	0.02	20000	3.6
8	31200	1560	0.05	50000	3.1
9	31200	1560	0.05	50000	3.1
10	31200	936	0.03	30000	3.4
11	52000	1040	0.02	20000	3.5
12	52000	2080	0.04	40000	3.3
Jumlah	439700	15438	0.42	420000	40.1
Rata- Rata	36641.66667	1286.5	0.035	35000	3.34

Sumber: Hasil Pengolahan Data

2. Percetakan Total

Dari hasil perhitungan didapat seperti tabelberikut :

Tabel 3. Produksi Percetakan Total
Tahun 2014

	Hasil	Produk			Nilai
Bulan	Produksi	Cacat	DPU	DPMO	Sigma
1	64000	3200	0.05	50000	3.1
2	64000	3840	0.06	60000	3.1
3	65000	2600	0.04	40000	3.3
4	31500	1890	0.06	60000	3.1
5	32500	2275	0.07	70000	3
6	150000	9000	0.06	60000	3.1
7	84500	3380	0.04	40000	3.3
8	84500	2535	0.03	30000	3.4
9	84500	1690	0.02	20000	3.6
10	84500	6760	0.08	80000	2.9
11	40500	2835	0.07	70000	3
12	51000	4080	0.08	80000	2.9
Jumlah	836500	44085	0.66	660000	37.8
Rata-					
Rata	69708.33	3673.75	0.055	55000	3.15

Sumber: Hasil Pengolahan Data

3.2.3 Analyze

Tahapan analyzedilakukan untuk mengetahui hubungan terkait antara produk cacat terhadap hasil produksi.Hal ini dilakukan dengan analisis statistik yaitu dengan analisis linier berganda.

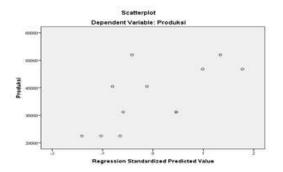
3.2.3.1 Analisis Regresi Linier Berganda

Sebelum analisis regresi digunakan maka perlu di lakukan Uji Asumsi klasik yang berupa uji normalitas, uji linieritas dan uji ekonometrika. Analisis Uji Ekonometrika digunakan untuk mengetahui apakah model yang digunakan adalah baik/sesuai. Analisis ini terdiri 1) Uji Multikolinieritas, atas: Uji Autokorelasi, dan 3) Uji Heterokedastisitas.

1. Pada Percetakan Erwin

Uji Asumsi Klasik

Dalam uji asumsi klasik dimasudkan untukmultikolinieritas dari model ituheterokedastisitas dari model regresi yang didapat.

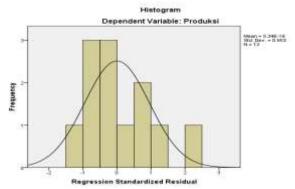

Uji Multikolinieritas

Multikolinearitas artinya antar variabel independen yang terdapat dalam regresimemiliki hubungan linier yang sempurna mendekati sempurna.Metode ujimultikoliniearitas yaitu dengan melihat nilai tolerance dan inflation faktor (VIF) pada modelregresi.Berdasarkan pengolahan data didapat bahwa nilai VIF nya kurang dari 10 maka persamaan regresi ini memenuhikriteria tidak terdapat multikoliniearitas.

Durbin Watson = 1.320, makadisimpulkan bahwa nilai durbin watson tanpa kesimpulan d. Uji Heterokedastisitas

Berdasarkan pengujian didapatkan nilai

Regresi sebaiknya tidak terjadi heteroskedasitas, hal ini ditunjukkan dengan melihat pola titik-titik pada grafik regresi.Jika titik-titiknya tidak membentuk pola yang jelas maka dapat dikatakan tidak terjadi heteroskedasitas.


Gambar 2. Scatter Diagram Sumber: Data Primer yang diolah SPSS ver 20, 2015

e. Uji Normalitas

Tujuan dilakukannya uji normalitas adalah untuk mengetahui apakah model regresi, variable terikat dan variabel bebas keduanya mempunyai distribusi normal atau tidak, sedangkan uji regresi itu sendiri adalah bertujuan untuk mencari apakah memang adapengaruh yang signifikan antara variabel terikat dengan variabel bebas.

Sesuai dengan pengamatan yang dibuat apabila diperhatikan data menyebar disekitargaris normal dan mengikuti diagonal, maka model regresi memenuhi asumsi normalitas, model regresi adalah normal.

c. Uji Autokolerasi

Gambar 3. Grafik Normal Q-Q Plot

Sumber: Data Primer yang diolah SPSS ver 20, 2015

f. Uji Linieritas

Uji Linieritas artinya bentuk hubungan antara variabel bebas (X) dan variabel terikat (Y) adalah Linear. Jika nilai F lebih besar dari 0,05 maka *hipotesis* hubungan liniearitas dapat diterima.

Tabel 4. Hasil Uji Linieritas

	ANOVA*											
Model		Sum of Squares	Df	Mean Square	1	Sig						
	Regression	590525435.314	1	590525435314	7325	6725						
1	Renduct	806183731.353	10	80618373 135								
	Total	1396709166.667	11									

a. Dependent Variable: Produksi

b. Predictors: (Constant), Produk Cacat Sumber: Data diolah SPSS versi 10, 1015

2. Pada Percetakan Total

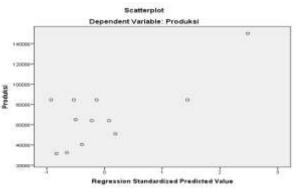
a. Uji Muttikolinieritas

Nilai VIF kurang dari 10 maka persamaan regresi ini memenuhikriteria tidak terdapat multikolinearitas.

b. Uji Autokolerasi

Tabel 5. Hasil Uji Autokolerasi

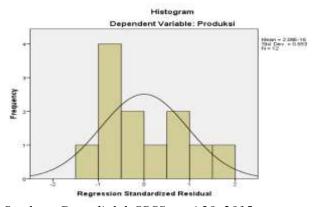
Model Summary^b


M od el	R	R Squ are	Adj uste d R Squ are	Std. Erro r of the Esti mate		F Ch ang e	d f 1		Sig. F Cha	Dur bin - Wa tso n
1	.7 44 a	.55 4	.509	226 12.7 32	.554	12. 40 5	1	1 0 a	.00	1.2 00

Predictors: (Constant), Cacat

Dependent Variabel: Produksi

Sumber: Data diolah SPSS versi 20, 2015


c. Uji Heterokedastisitas

Sumber: Data diolah SPSS versi 20, 2015

Gambar 4. Scatter Diagram

d. Uji Normalitas

Sumber: Data diolah SPSS versi 20, 2015

Gambar 5. Grafik Normal Q-Q Plot

a. Uji Linieritas Tabel 6. Hasil Uji Linieritas ANOVA^a

M	odel	Sum of Squares	df	Mean Square	F	Sig.
	Regressi on	6343372532. 876	1	6343372532. 876	12.40 5	.006 ^b
1	Residual	5113356633. 791	10	511335663.3 79		
	Total	1145672916 6.667	11			

a. Dependent Variable: Produksi

b. Predictors: (Constant), Produk Cacat

Persamaan Regresi Linier Berganda

a. Percetakan Erwin

Dari hasil pengolahn data dapat dilihat bahwa hasil analisis regresi linier dengan menggunakan SPSS ver 20 dapat dilihat pada tabel 7.sebagai berikut :

Tabel 7. Hasil Uji Multikolinierritas

Coefficients^a

Mo	odel	Unstandar dized Coefficien ts		Stand ardiz ed Coeff icient s	t	S i g .	Correlatio ns			Collinearity Statistics		
		В	Std. Err or	Beta			er o o r d er	er a ar o rt t - ia o l r d l		To ler an ce	VIF	
1	(Co nsta nt) Cac at	207 51.3 73 12.3 52	641 7.9 14 4.5 64	.650	3. 2 3 2. 7 0 6	0 0 9 0 2 2	.6 5 0	.6 5 0	.6 5 0	1. 00 0	1.000	

Dependent Variabel: Produksi

Sumber: Data diolah SPSS versi 20, 2015

Hasil Regresi diatas diformulasikan persamaan regersi untuk mengetimasi variabel terikat dengan menggunakan seluruh variabel bebas adaalah sebagai berikut:

$Y = 20751.373 + 12.352X_1$

Dari persamaan dapat dijelaskan bahwa variabel bebas : produk cacat memiliki pengaruh terhadap hasil produksi.

b. Percetakan Total

Tabel 8. Hasil Uji Multikolinierritas

Coefficients^a

M	odel	Unstandard ized Coefficient s		Stand ardize d Coeff icient s	t	S i g .	Correlation s		Collinear ity Statistics		
		В	Std. Err or	Beta			Z er o- or d er	er ar ar o- ti t or al d		To ler an ce	VI F
1	(Co nsta nt) Cac at	2858 4.70 2 11.1 94	133 76. 629 3.1 78	.744	2. 1 3 7 3. 5 2 2	0 5 8 0 0 6	.7 4 4	.7 4 4	.7 4 4	1. 00 0	1.0

Dependent Variabel: Produksi

Dari persamaan dapat dijelaskan bahwa variabel bebas : produk cacat memiliki pengaruh terhadap hasil proses produksi.

PengujianHipotesis

a. Percetakan Erwin

Pembuktian Hipotesis menggunakan 2 (dua) uji, yaitu: Uji t (Parsial) untuk melihat pengaruh parsial dari masing-masing variabel bebas terhadap variabel terikat, dan Uji F (Simultan) untuk melihat pengaruh simultan dari kedua variabel bebas terhadap variableterikat.

• Uji T (Parsial)

Untuk melihat pengaruh secara parsial antara variable bebas terhadap variable

bergantung di lakukan uji t dapat dilihat pada tabel 9.berikut:

Tabel 9. Hasil Uji t (Persial)

Coefficients^a

Mo	odel	Unstandardi zed Coefficients		Standa rdized Coeffi cients	t	S i g.	Cor	relati	ons	Collinea rity Statistic s	
		В	Std. Erro r	Beta			Ze ro or de r	Pa rti al	Pa rt	Tol era nce	VI F
1	(Con stant) Caca t	2075 1.373 12.35 2	6417 .914 4.56 4	.650	3. 23 3 2. 70 6	.0 9 .0 2	.6 50	.6 50	.6 50	1.0	1. 00 0

Dependent Variabel: Produksi

Sumber: Pengolahan Data SPSS ver 20, 2015

Sementara Hipotesis Penelitian:

H0: Produk cacat tidak berpengaruh terhadap hasil produksi

H1 :Produk cacat berpengaruh terhadap Hasil produksi

Kriteria pengujian

Jika nilai- t tabel < t hitung < t tabel maka H0 diterima

Jika- t tabel <t hitung atau t hitung > t tabel, maka H0 ditolak.

Tingkat kepercayaan maka nilai α 5 % = 0.05

Df (derajat Kesalahan) = 10

Produk cacat $T_{Hitung} = 2.706$

Maka T_{Tabel} didapat nilai = 1.78229(lihat tabel t)

Produk Cacat $T_{Hitung} > T_{Tabel,}$ secara statistik (2.706 > 1.782, maka dari kriteria penguji H0 ditolak sedangkan uji hipotesisnya H1 produk cacat berpengaruh terhdap hasil produksi.

• Uji F (Simultan)

Uji F-hitung (Fh) atau (p<0,05) ini bertujuan untuk menguji apakah variabel produk cacat memiliki pengaruh yang signifikan terhadap jumlah produksi .Untuk menguji kebenaran hipotesis tersebut dilakukan uji F yaitu dengan membandingkan F hitung dengan F tabel. Jika F hitung > F tabel maka persamaan regresi dan koefisien korelasinya signifikan sehingga. Ho ditolak dan Ha diterima. Atau dapat pula di lihat dari *level of significant alpha* (a) = 0,05. Jika nila signifikansi > 0,05 maka Ho ditolak dan Ha

diterima.

Tabel 10. Hasil Uji F Model Summary^b

M od	R	R Squ	Adju sted	Std. Erro	(Dur bin-					
el		are	R	r of	R	R F d df Sig.					
			Squa	the	Squa						
			re	Esti	re nge 1 Cha					n	
				mate	Cha nge				nge		
					nge						
1	.6 50 a	.42	.365	8978 .773	.423	7.3 25	1	10 a	.022	1.3 20	

Predictors: (Constant), Cacat Dependent Variabel: Produksi

Sumber : Data Primer yang diolah SPSS 20,

2015

Sementara Hipotesis Penelitian sebagai berikut:

H0: Produk cacat tidak berpengaruh terhadap hasil produksi.

H1 :Produk cacat berpengaruh terhadap hasil produksi

Kriteria Pengujian

Ho diterima Jika F hitung \leq F tabel Ho ditolak JikaF hitung > F tabel

Df 1 = 1, Df 2 = 10, $F_{Hitung} = 7.325$

 $F_{Tabel} = 4.96$ (Lihat ditabel F)

 $F_{Hitung} > F_{Tabel} \ (\ 7.325{>}\ 4.96\)\ jadi\ Ho$ ditolak, maka dari hipotesis statistik menyatakan H1 yaitu produk cacatberpengaruh terhadap hasil proses produksi.

b. Percetakan Total

• Uji T (Parsial)

Tabel 11. Hasil Uji t (Persial)

Coefficients^a

M	Odel Unstandardi zed Coefficients		zed rdized	t	S ig	Con	relatio	ons	Collinearit y Statistics		
		В	Std. Erro r	Beta			Ze ro - Or de r	orti rt al Or		Tol era nce	VIF
1	(Con stant) Caca t	2858 4.702 11.19 4	1337 6.62 9 3.17 8	.744	2. 13 7 3. 52 2	.0 5 8 .0 0 6	.7 44	.7 44	.7 44	1.0	1.00

a. Dependent Variabel: Produksi

Sumber: Pengolahan Data SPSS ver 20, 2015

Sementara Hipotesis Penelilitian adalah

H0: Produk cacat tidak berpengaruh terhadap hasil produksi

H1 : Produk cacat berpengaruh terhadap Hasil produksi

Kriteria pengujian

Jika nilai- t tabel < t hitung < t tabel maka H0 diterima

Jika- t tabel <t hitung atau t hitung > t tabel, maka H0 ditolak.

Tingkat kepercayaan maka nilai α 5 % = 0.05

Df (derajat Kesalahan) = 10

Produk cacat $T_{Hitung} = 3.522$

Maka T_{Tabel} didapat nilai = 1.81246(lihat tabel t)

Produk Cacat $T_{Hitung} > T_{Tabel,}$ secara statistik (3.522 > 1.812, maka dari kriteria penguji H0 ditolak sedangkan uji hipotesisnya H1 produk cacat berpengaruh terhdap hasil produksi.

• Uji F (Simultan)

Tabel 12. Hasil Uji F Model

Summary													
	M	R	R	Adju	Std.	Change	Ch	ange	Dur				
	od		Squ	sted	Erro	Statistic	s		Sta	tistics	bin		
	el		are	R	r of				l -				
ı				Squa	the	R	F	d	d	Sig.	Wa		
ı				re	Esti	Square	Ch	f	f	F	tso		
ı				16		Chang	ang	1	2	Cha			
					mate	e	e			nge	n		
		.7			2261		10		1		1.0		
	1	44	.55	.509	2.73	.554	12.	1	0	.006	1.2		
ı		a	4		2		405		a		00		
ı					2								

a. Predictors: (Constant), Cacat

b. Dependent Variabel: Produksi

Sumber: Data diolah SPSS versi 20, 2015

Sementara Hipotesis Penelilitian adalah

H0: Produk cacat tidak berpengaruh terhadap hasil produksi.

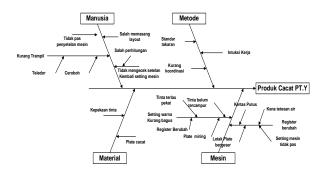
H1: Produk cacat berpengaruh terhadap hasil produksi.

Kriteria Pengujian

Ho diterima Jika F hitung \leq F tabel

Ho ditolak JikaF hitung > F tabel

Df 1 = 1,Df 2 = 10, $F_{Hitung} = 12.405$


 $F_{Tabel} = 4.96$ (Lihat ditabel F)

 $F_{Hitung} > F_{Tabel} (12.405 > 4.96) jadi$

Ho ditolak, maka dari hipotesis statistik menyatakan H1 yaitu produk cacatberpengaruh terhadap hasil proses produksi.

d.Improve

Dalam perbaikan proses, *improve* yang dilakukan seperti mengembangkan ide untuk meniadakan akar masalah, megadakan pengujian dan mengukur hasil. Pada langkah ini diteteapkan suatu rencana untuk melaksanakan peningkatan kualitas sigma pada percetakan erwin dan total dengan menggunakan alat *seven tool*s yaitu diagram sebab akibat atau tulang ikan.

Gambar 6. Diagram Tulang Ikan Pada Percetakan Erwin dan total

Faktor-faktor penyebab produk cacat pada proses produksi Percetakan Erwin dan Total adalah sebagai berikut:

a. Faktor Manusia

- Tidak pas penyetelan mesin
- Kurang trampil
- Teledor
- Setelang memasang layout
- Kurang trampil
- Ceroboh
- Tidak mengecek kembali setting mesin
- Salah perhitungan

b. Faktor Metode Kerja

- Standar takaran
- Kurang koordinasi

- Instruksi kerja
- c. Faktor Material
 - Kepekatan tinta
 - Plate cacat

d. Faktor Mesin

- Setting warna kurang pas
- Register berubah
- Halaman register bergeser
- Plate miring
- Tinta belum tercampur
- Kena tetesan air
- Kertas putus

e. Control

Control merupakan tahap operasional terakhir dalam upaya peningkatan kualitas. Untuk menentukan nilai *P-Chart dan C-Chart*.

Tabel 13.
Persentase Produk Cacat Tahun 2014

		PersentaseCacat	
N o	Bulan	Percetakan erwin	Percetakantota
1	Januari	0.02	0.05
2	Februari	0.04	0.06
3	Maret	0.03	0.04
4	April	0.05	0.06
5	Mei	0.04	0.07
6	Juni	0.03	0.06
7	Juli	0.02	0.04
8	Agustus	0.05	0.03
9	September	0.05	0.02
10	Oktober	0.03	0.08
11	November	0.02	0.07
12	Desember	0.04	0.08
Jumlah		0.42	0.66
Rata-Rata		0.35	0.55

Sumber : Pengolahan Data

Menghitung Nilai P-Chart

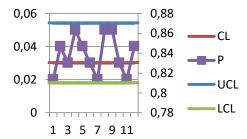
• Menghitung Central Line P-chart

$$P = \frac{n1p1 + n2p2 + \dots nkpk}{n1 + n2 + \dots nk} = \frac{450(0.02) + 900(0.04) + \dots + 2080(0.04)}{450 + 900 + \dots + 2080} = \frac{597.86}{15438} = 0.03$$

• Menghitung Persentase Kerusakan

Bulan Januari
$$\frac{450}{22500} = 0.02$$

Bulan Januari $\frac{900}{22500} = 0.04$

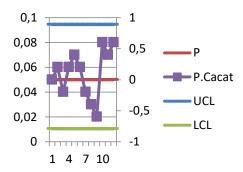

• Menghitung *Upper Control Limit (UCL)*

UCL =
$$0.03 + 3\sqrt{\frac{0.03 (1-0.03)}{12}}$$

= $0.03 + 3 (0.28) = 0.87$

• Menghitung Lower Control Limit (LCL)

$$LCL = 0.03 - 3 \sqrt{\frac{0.03 (1 - 0.03)}{12}}$$
$$= 0.03 - 3 (0.28) = 0.81$$


• Grafik P-Chart

Sumber: Data Pengolahan

Gambar 7. Grafik *P-chart*Pada Percetakan
Erwin

Dari grafik diatas tidak ada nilai yang berada di *out of control* batas UCL, CL dan LCL, tetapi grafik tersebut menunjukkan ketidak stabilan proses produksi pada percetakan erwin yang terlihat dari grafik yang naik turun, dengan nilai P = 0.03.

Sumber: Data Pengolahan

Gambar 8. Grafik *P-chart*Pada Percetakan Total

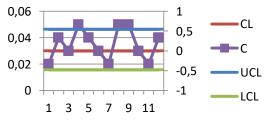
Dari grafik diatas tidak ada nilai yang berada di *out of control* batas UCL, CL dan LCL, tetapi grafik tersebut menunjukkan ketidak stabilan proses produksi yang terlihat dari grafik yang naik turun, dengan nilai P=0.05

Menghitung Nilai C-Chart

• Menghitung Central Line C-chart

$$C = \frac{C1+C2...+CK}{K}$$

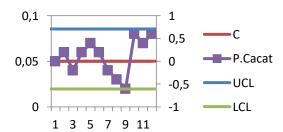
$$C = \frac{5+6+4...+8}{12} = \frac{0.42}{12} = 0.035$$


• Menghitung *Upper Control Limit (UCL)*

$$UCL = 0.03 + 3\sqrt{0.03} = 0.54$$

• Menghitung Lower Control Limit (LCL)

$$LCL = 5.5 - 3\sqrt{5.5} = -0.48$$


• Grafik C-chart

Sumber : Data Pengolahan

Gambar 9. Diagram C-chart Pada Percetakan Erwin

Dari grafik diatas tidak ada nilai yang berada di *out of control* batas UCL, CL dan LCL, tetapi grafik tersebut menunjukkan ketidak stabilan proses produksi yang terlihat dari grafik yang naik turun, dengan nilai C = 0.03.

Sumber: Data Pengolahan

Gambar 10. Diagram C-chart Pada Percetakan Total

Dari grafik diatas tidak ada nilai yang berada di *out of control* batas UCL, CL dan LCL, tetapi grafik tersebut menunjukkan ketidak stabilan yang terlihat dari grafik yang naik turun, dengan nilai P=0.05

4. SIMPULAN

Berdasarkan hasil pengolahan data yang telah dilakukan, dapat disimpulkan antara lain:

1. Kapabilitas kinerja industri percetakan erwin memiliki rata-rata tingkat sigma sebesar 3.34 dan kemungkinan kerusakan sebesar 35000 dalam satu juta produksi, sedangkan untuk percetakan total memiliki rata –rata sigma 3.15 dengan kemungkinan kerusakan sebesar 55000 dalam satu juta produksi, dan jumlah kecacatan produk kedua percetakan masih berada pada batas kendali. Hal ini menunjukkan kapabilitas kinerja kedua

- percetakan cukup baik untuk bersaing dengan kompetitor sejenis.
- Faktor dominan penyebab terjadinya produk cacat adalah faktor manusia dan mesin.

Adapun beberapa saran yang dapat dijadikan pertimbangan bagi industri percetakan, antara lain:

- Industri percetakan sangat perlu melakukan evaluasi kinerja terutama pada aspek mesin dan manusia yang merupakan faktor dominan penyebab kecacatan hasil produksi cetakan.
- Perlunya membuat laporan atas produk cacat sebagai laporan bahan baku dan mengetahui kerugian yang dihasilkan karena produk cacat.

DAFTAR RUJUKAN

- Ariani, Wahyu. 2004. *Manajemen Kualitas*. Yogyakarta: Universitas Atmajaya.
- Gaspersz, Vincent. 2002. *Pedoman Implementasi Program Six Sigma*. Jakarta: PT
 Gramedia Pustaka Utama.
- Gaspersz Vincent, Fontana avanti, (2011), Lean Six Sima for Manufacturing and Service Industries. Bogor: Penerbit Vinchiristo Publication.
- Manggala, D. 2005. *Menerapkan Konsep Lean dan Six Sigma di Sektor Publik*. IPOMS Newsletter, Vol 1/1/4-5 Agustus 2005.
- Pande, Peter S., et al. 2002. *The Six Sigma Way*. Yogyakarta: Andi Offset.
- Purnomo, Hari. 2004. *Pengantar Teknik Industri*. Yogyakarta: Graha Ilmu