Predicting Financial Distress in Indonesia’s Hospitality Sector: a 2019-2022 Analysis

  • Ulfha Suryana Amara Universitas Bengkulu
  • Fadli Fadli Universitas Bengkulu
Keywords: Financial Distress, Altman, Springate, Foster, Taffler

Abstract

This study investigates the most accurate financial distress prediction model for companies within the Hotel, Resort, and cruise lines sub-sector listed on the Indonesia Stock Exchange from 2019 to 2022. The research uses a quantitative descriptive methodology to analyze numerical data derived from each model's parameters. Secondary data, sourced from financial reports available on IDX.co.id or official company websites, forms the basis of analysis. Results indicate that the Zmijewski prediction model outperforms others, achieving a remarkable accuracy level of 100%. In contrast, the Atman and Springate models follow with a 52% accuracy rate, securing the second position. The Grover model ranks third, demonstrating a 50% accuracy level. Lastly, the Taffler model trails behind with a 34.6% accuracy level. In summary, this research provides insights into the effectiveness of various financial distress prediction models within the specified industry and geographical context. The findings underscore the significance of the Zmijewski model as a robust tool for anticipating financial distress among companies in the Hotel, Resort, and cruise Lines sector on the Indonesia Stock Exchange during the stated timeframe. The study's quantitative descriptive approach enhances understanding by presenting numerical evidence, contributing valuable knowledge to financial analysis and risk management practices within the targeted industry sector.

 

Keywords: financial distress, Altman, Springate, Foster, Taffler, Zmijewski, Grover

 

Abstrak

Penelitian ini bertujuan untuk meneliti model prediksi kebangkrutan keuangan yang paling efektif bagi perusahaan-perusahaan di sub-sektor Hotel, Resort & Cruise Lines yang terdaftar di Bursa Efek Indonesia dari tahun 2019 hingga 2022. Melalui pendekatan deskriptif kuantitatif, data numerik dari berbagai parameter model dianalisis. Data sekunder dari laporan keuangan yang tersedia di idx.co.id atau situs web resmi perusahaan digunakan sebagai dasar analisis. Hasil penelitian menunjukkan bahwa model prediksi Zmijewski menunjukkan kinerja unggul dengan tingkat akurasi mencapai 100%. Sementara model Atman dan Springate menduduki posisi kedua dengan tingkat akurasi sebesar 52%, diikuti oleh model Grover di posisi ketiga dengan tingkat akurasi 50%. Model Taffler memiliki tingkat akurasi 34,6%.  Penelitian ini memberikan wawasan yang signifikan terkait efektivitas model prediksi kebangkrutan keuangan dalam konteks industri dan geografis tertentu. Temuan tersebut menggarisbawahi keandalan model Zmijewski sebagai alat prediksi kebangkrutan keuangan yang handal bagi perusahaan-perusahaan di sub-sektor Hotel, Resort & Cruise Lines di Bursa Efek Indonesia selama periode yang diteliti. Pendekatan deskriptif kuantitatif yang digunakan dalam penelitian ini memberikan kontribusi penting bagi pemahaman tentang praktik analisis keuangan dan manajemen risiko dalam industri yang dituju. Dengan demikian, penelitian ini tidak hanya memberikan gambaran tentang kinerja berbagai model prediksi kebangkrutan keuangan, tetapi juga menyoroti keunggulan model tertentu dalam konteks yang spesifik.

 

Kata kunci: financial distress, Altman, Springate, Foster, Taffler, Zmijewski, Grover

References

Altman, E. (1968). Financial ratio, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609. http://dx.doi.org/10.1111/j.1540-6261.1968.tb00843.x

Aminian, A., Mousazade, H., & Khosko, O. I. (2016). Investigate the Ablitity of Bankruptcy Prediction Model of Altman, Springate, Zmijewski and Grover in Tehran Stock Exchange. Mediterranean Journal of Social Sciences, 208-214

Aurellie Zulfa Islamy, Unggul Purwohedi, & Rida Prihatni. (2021). Faktor-faktor yang Mempengaruhi Financial Distress Perusahaan Terdampak COVID-19 di ASEAN. Jurnal Akuntansi, Perpajakan Dan Auditing, 2(3), 710–734. https://doi.org/10.21009/japa.0203.13

Azzahra, S. Z., & Pangestuti, D. C. (2022). Analisis tingkat akurasi model prediksi financial distress pada perusahaan sektor transportasi dan logistik. Akuntabel, 19(1), 59–67. https://doi.org/10.30872/jakt.v19i1.10727

Blessing, H., & Sakouvogui, G. (2023). Impact of Liquidity and Solvency Ratios on Financial Performance: A Comprehensive Analysis. Indonesia Auditing Research Journal, 12(3), 102-115.

Cao, J., Dong, D., & Yue, S. (2024). Institutional investors’ site visits and firms’ financial distress. Research in International Business and Finance, 67(PB), 102150. https://doi.org/10.1016/j.ribaf.2023.102150

Dewasiri, N. J., Perera, N. S. P., Wijerathna, W. A. I. D., Jayarathne, P. A., Muthusamy, V., & Grima, S. (2023). How Has COVID-19 Impacted the Business Performance of Sri Lankan Firms: A Qualitative Inquiry. In Digital Transformation, Strategic Resilience, Cyber Security and Risk Management (Vol. 111, pp. 201-216). Emerald Publishing Limited.

Didier, T., Huneeus, F., Larrain, M., & Schmukler, S. L. (2021). Financing firms in hibernation during the COVID-19 pandemic. Journal of Financial Stability, 53, 100837

Endaryanto, A., Dewi, A., Kusbaryanto, & Nugraha, R. A. (2023). Trend in the admissions of patients with non-COVID-19 respiratory symptoms during COVID-19 pandemic and its impact on hospital finances in Surabaya, Indonesia. Heliyon, 9(4), e15122. https://doi.org/10.1016/j.heliyon.2023.e15122

Jensen, M. C., & Meckling, W. H. (1976). Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure. Journal of Financial Economics, 3(4), 305-360.

Jeong, J., Kim, J., Son, H., & Nam, D. I. (2020). The role of venture capital investment in startups’ sustainable growth and performance: Focusing on absorptive capacity and venture capitalists’ reputation. Sustainability, 12(8), 3447.

Masdiantini, P. R., & Warasniasih, N. M. S. (2020). Laporan Keuangan dan Prediksi Kebangkrutan Perusahaan. Jurnal Ilmiah Akuntansi, 5(1), 196. https://doi.org/10.23887/jia.v5i1.25119

Ngeno, J. C. (2019). Capital adequacy framework, funds allocation strategy and financial performance of deposit taking Sacco’s in Kenya (Doctoral dissertation, KeMU).

Nikmah, N., & Sulestari, D. D. (2021). Prediksi Financial Distress Untuk Perusahaan Besar Dan Kecil Di Indonesia Perbandingan Ohlson Dan Altman. Jurnal Fairness, 4(1), 37–60. https://doi.org/10.33369/fairness.v4i1.15299

Prabheesh, K. P., Sasongko, A., & Indawan, F. (2023). Did the policy responses influence credit and business cycle co-movement during the COVID-19 crisis? Evidence from Indonesia. Economic Analysis and Policy, 78, 243-255

Primasari, N. S. (2018). ANALISIS ALTMAN Z-SCORE, GROVER SCORE, SPRINGATE, DAN ZMIJEWSKI SEBAGAI SIGNALING FINANCIAL DISTRESS (Studi Empiris Industri Barang-Barang Konsumsi di Indonesia). Accounting and Management Journal, 1(1), 23–43. https://doi.org/10.33086/amj.v1i1.70

Rababah, A., Al‐Haddad, L., Sial, M. S., Chunmei, Z., & Cherian, J. (2020). Analyzing the effects of COVID‐19 pandemic on the financial performance of Chinese listed companies. Journal of Public Affairs, 20(4), e244.

Rahmah, I., & Novianty, I. (2021). Comparative analysis of financial distress before and during the Covid-19 pandemic: Empirical evidence In Indonesia. International Journal of Business, Economics and Law, 24(5), 216-222

Rahmati, S., Mahdavi, M. H., Ghoushchi, S. J., Tomaskova, H., & Haseli, G. (2022). Assessment and prioritize risk factors of financial measurement of management control system for production companies using a hybrid Z-SWARA and Z-WASPAS with FMEA method: a meta-analysis. Mathematics, 10(2), 253.

Roszkowska, P. (2021). Fintech in financial reporting and audit for fraud prevention and safeguarding equity investments. Journal of Accounting & Organizational Change, 17(2), 164-196.

Sari, K. R., Martini, R., Almira, N., Hartati, S., & Husin, F. (2022). Prediction of Bankruptcy Risk Using Financial Distress Analysis. Golden Ratio of Finance Management, 2(2), 77-86.

Setyowati, W., & Sari Nanda, N. R. (2019). Pengaruh Likuiditas, Operating Capacity, Ukuran Perusahaan Dan Pertumbuhan Penjualan Terhadap Financial Distress (Studi Pada Perusahaan Manufaktur Yang Terdaftar Di Bei Tahun 2016-2017). Jurnal Magisma, 4(2), 618–624.

Spence, M. (1978). Job market signaling. In Uncertainty in economics (pp. 281-306). Academic Press.

Springate, G. L. 1978. Predicting the possibility of failure in a Canadian firm. Unpublished MBA project, Simon Fraser University.

Taffler, R. J. (1983). The assessment of company solvency and performance using a statistical model. Accounting and Business Research, 13(52), 295-308

Ugur, M., Solomon, E., & Zeynalov, A. (2022). Leverage, competition and financial distress hazard: Implications for capital structure in the presence of agency costs. Economic Modelling, 108, 105740.

Vassallo, J. M., & Garrido, L. (2023). 14. Transport funding and financing: a conceptual overview of theory and practice. Handbook on Transport Pricing and Financing, 273.

Wahyuni, S. F., & Rubiyah. (2021). Analisis Financial Distress Menggunakan Metode Altman Z-Score, Springate, Zmijeski dan Grover pada Perusahaan Sektor Perkebunan yang Terdaftar di Bursa Efek Indonesia. MANIEGGIO: Jurnal Ilmiah Magister Manajemen, 4(1), 62–72.

Wang, X. (2023). A macro-financial perspective to analyse maturity mismatch and default. Journal of Banking & Finance, 151, 106468.

Yacoub, L., & ElHajjar, S. (2021). How do hotels in developing countries manage the impact of COVID-19? The case of Lebanese hotels. International Journal of Contemporary Hospitality Management, 33(3), 929-948.

Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting research, 59-82

Published
2024-07-04
How to Cite
Amara, U., & Fadli, F. (2024). Predicting Financial Distress in Indonesia’s Hospitality Sector: a 2019-2022 Analysis. MBIA, 23(1), 74–93. https://doi.org/10.33557/mbia.v23i1.2952
Section
Articles
Abstract viewed = 269 times
pdf : 57 times